Bài tập  /  Bài đang cần trả lời

Cho ngũ giác đều ABCDE. Hai đường chéo AC và BE cắt nhau tại điểm K. Chứng minh tứ giác ACDE là hình thang cân và CDEK là hình thoi.

Cho ngũ giác đều ABCDE. Hai đường chéo AC và BE cắt nhau tại điểm K. Chứng minh tứ giác ACDE là hình thang cân và CDEK là hình thoi.

1 Xem trả lời
Hỏi chi tiết
14
0
0
Nguyễn Thị Thương
10/09/2024 07:34:14

Số đo mỗi góc của ngũ giác đều là 1080.

Ta có tam giác ABC cân tại B

⇒A1^=C1^=(1800−1080):2=360⇒EAC^=DCA^    (1)

Chứng minh tương tự ta được:

C3^=E^1=360⇒C2^=360 

Có C2^=E1^=360⇒ED//AC      (2)

Từ (1) và (2), suy ra ACDE là hình thang cân (ĐPCM)

(Các khác: Có thể chứng minh hình thang ACDE có hai đường chéo bằng nhau)

* Chứng minh tương tự ta có JEF^=EFG^=FGH^=GHI^=HIJ^=IJE^.

Vậy tứ giác CDEK là hình bình hành

mà CD = DE, suy ra hình bình hành CDEK là hình thoi (ĐPCM)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×