Cho ba điểm A, M, B phân biệt, thẳng hàng và M nằm giữa A, B. Trên cùng một nửa mặt phẳng bờ là đường thẳng AB, dựng hai tam giác đều AMC và BMD. Gọi P là giao điểm của AD và BC.
a) Chứng minh AMPC và BMPD là các tứ giác nội tiếp
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Vì CMA=DMB=60o⇒CMB=DMA=120o. Xét ∆ CMB và ∆ AMD có
CM=AMCMB=DMA⇒ΔCMB=ΔAMD(c.g.c)MB=MD⇒MCB=MADMBC=MDA
Suy ra AMPC và BMPD là các tứ giác nội tiếp
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |