Cho tam giác nhọn ABC, đường cao AH, H thuộc BC. P thuộc AB sao cho CP là phân giác góc BCA. Giao điểm của CB và AH là Q. Trung trực của PQ cắt AH và BC lần lượt tại E, F.
1) PE giao AC tại K. Chứng minh rằng PK vuông góc AC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có tam giác EPQ cân tại E và CQ là phân giác góc BCA,
nên EPQ^=EQP^=HQC^=900−HCQ^=900−PCK^.
Do đó EPQ^+PCK^=900, nên PK⊥AC.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |