Cho tam giác ABC có B^=60°; AB= 7cm; BC= 15 cm. Vẽ AH vuông góc với BC (H thuộc BC). Lấy điểm M trên HC sao HM= HB.
a) So sánh góc BAC và ACB.
b) Chứng minh tam giác ABM đều.
c) Tam giác ABC có phải là tam giác vuông không? Vì sao?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Chứng minh
a) Trong tam giác ABC có: AB = 7 cm; BC = 15 cm nên AB < BC
Do đó:
b) Xét tam giác ABH và tam giác AMH cùng vuông tại H có:
AH: cạnh chung
HB = HM (gt)
Do đó: (hai cạng góc vuông)
Suy ra: AB = AM (hai cạnh tương ứng)
Nên ABM cân tại A
Mà
Do đó tam giác ABM đều.
c) Ta có: BM = AB = 7 cm ( tam giác ABM đều)
Suy ra BH = HM = 7/2 = 3,5 cm
HC = BC - BH = 15 - 3,5 = 11,5 cm
Áp dụng định lý Pytago trong tam giác ABH vuông tại H:
AH2=AB2-BH2=72-(3,5)2=36,75
Áp dụng định lý Pytago trong tam giác ACH vuông tại H:
AC2=AH2+HC2=36,75+(11,5)2=169
AC = 13 cm
Vì 72+132=218≠225=152 nên AB2+AC2≠BC2
Vậy tam giác ABC không phải là tam giác vuông.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |