Cho ∆ABC nhọn và AB < AC nội tiếp đường tròn tâm O. Gọi D, E, F lần lượt là điểm chính giữa của các cung nhỏ AB, BC, CA. Tiếp tuyến tại A của đường tròn cắt các đường thẳng BC và DF lần lượt tại M và N. Gọi P và Q lần lượt là giao điểm của đường thẳng BC với đường thẳng DF và AE.
a) Chứng minh rằng AE⊥DF
b) Chứng minh rằng MA = MQ, MN = MP
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Trước hết, từ giả thiết “D, E, F lần lượt là điểm chính giữa của các cung nhỏ AB, BC, CA” ta được:
a) Gọi I là giao điểm của AE và DF, ta có ngay:
b) Xét ∆MAQ sử dụng định lí về góc tạo bởi tia tiếp tuyến với một dây và góc có đỉnh ở bên trong đường tròn ta có
Xét ∆MNP, sử dụng định lí về góc có đỉnh ở bên ngoài đường tròn và hai góc đối đỉnh. Ta có:
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |