Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB⏜ và cung nhỏ BC⏜. Hai dây AN và CM cắt nhau tại I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K.
a) Chứng minh các điểm C, N, K, I cùng thuộc một đường tròn.
b) Chứng minh NB2=NK.MN
c) Chứng minh tứ giác BHIK là hình thoi.
d) Gọi PQ lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O). Chứng minh ba điểm D, E, K thẳng hàng.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có M là điểm chính giữa cung AB
⇒AM=BM⇒MNA^=MCB^⇒KNI^=ICK^
Tứ giác CNKI có C và N là hai đỉnh kề nhau cùng nhìn cạnh KI dưới hai góc bằng nhau nên CNKI nội tiếp (dấu hiệu nhận biết tứ giác nội tiếp).
Do dó bốn điểm C, N, I, K cùng thuộc một đường tròn.
b) Ta có N là điểm chính giữa cung BC
nên BK // HI (2)
Từ (1) và (2) suy ra tứ giác BHIK là hình bình hành.
Mặt khác, AN, CM lần lượt là các tia phân giác của các góc A và C trong tam giác ABC nên I là giao điểm ba đường phân giác, do đó BI là tia phân giác góc B.
Vậy tứ giác BHIK là hình thoi
Do vậy D, Q, C thẳng hàng nên KQ // PK.
Chứng minh tương tự ta có D, P, B thẳng hàng và DQ // PK.
Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |