Cho đường tròn (O ; R) đường kính AB và điểm M bất kì thuộc đường tròn (M ≠ A, B) . Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BM ở N. Tiếp tuyến của đường tròn tại M cắt AN ở D
a, Chứng minh: 4 điểm A, D, M , O cùng thuộc một đường tròn
b, Chứng minh: OD // BM và suy ra D là trung điểm của AN
c, Đường thẳng kẻ qua O và vuông góc với BM cắt tia DM ở E. Chứng minh: BE là tiếp tuyến của đường tròn (O ; R)
d, Qua O kẻ đường thẳng vuông góc với AB và cắt đường thẳng BM tại I. Gọi giao điểm của AI và BD là J. Khi điểm M di động trên (O ; R) thì J chạy trên đường nào?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a, Xét tứ giác ADMO có:
∠DMO = 900 (do M là tiếp tuyến của (O))
∠DAO = 900 (do AD là tiếp tuyến của (O))
=> ∠DMO + ∠DAO = 1800
=> Tứ giác ADMO là tứ giác nội tiếp
b, Do D là giao điểm của 2 tiếp tuyến DM và DA nên OD là tia phân giác của ∠AOM
=>(AOD = 1/2∠AOM
Mặt khác ta có (ABM là góc nội tiếp chắn cung AM)
=> ∠ABM = 1/2∠AOM
=> ∠AOD = ∠ABM
Mà 2 góc này ở vị trí đồng vị
=> OD // BM
Xét tam giác ABN có:
OM// BM; O là trung điểm của AB
=> D là trung điểm của AN
c, Ta có: ΔOBM cân tại O; OE ⊥ MB => OE là đường trung trực của MB
=> EM = EB = > ΔMEB cân tại E => ∠EMB = ∠EBM (1)
ΔOBM cân tại O => ∠OMB = ∠OBM (2)
Cộng (1) và (2) vế với vế, ta được:
∠EMB + ∠OMB = ∠EBM + ∠OBM ⇔ ∠EMO =∠EBO ⇔ ∠EBO = 90o
=>OB ⊥ BE
Vậy BE là tiếp tuyến của (O)
d, Lấy điểm E trên tia OA sao cho OE = OA/3
Xét tam giác ABI có OI vừa là đường cao vừa là trung tuyến
=> Tam giác ABI cân tại I => IA = IB; ∠IBA = ∠IAB
Ta có:
=> ∠NAI = ∠INA => ΔINA cân tại I => IA = IN
Tam giác NAB vuông tại A có: IA = IN = IB
=> IA là trung tuyến của tam giác NAB
Xét ΔBNA có:
IA và BD là trung tuyến; IA ∩ BD = {J}
=> J là trọng tâm của tam giác BNA
Xét tam giác AIO có:
AJAI = AEAO = 23
=> JE // OI
=> J nằm trên đường thẳng d vuông góc với AB và cách O một khoảng bằng R/3.
Phần đảo: Lấy điểm J' bất kì thuộc đường thẳng d
Do d // OI (cùng vuông góc AB) nên ta có:
AJ'AI = AEAO
Mà AEAO = 23 => AJ'AI = 23
AI là trung tuyến của tam giác NAB
=> J' là trọng tâm tam giác NAB
Vậy khi M di chuyển trên (O) thì J di chuyển trên đường thẳng d vuông góc với AB và cách O một khoảng là R/3
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |