Hai điểm M và K thứ tự nằm trên cạnh AB và BC của tam giác ABC; hai đoạn thẳng AK và CM cắt nhau tại P. Biết AP = 2PK và CP = 2PM. Chứng minh rằng AK và CM là các trung tuyến của tam giác ABC
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét △PAC và △PKM,ta có:
Suy ra:
Lại có:∠(APC) = ∠(KPM) (đối đỉnh)
Suy ra: △PKM đồng dạng △PAC(c.g.c) với tỉ số đồng dạng k = 1/2
Suy ra: (1)
Vì △PKM đồng dạng △PAC nên ∠(PKM) = ∠(PAC)
Suy ra: KM //AC (vì có cặp góc ở vị trí so le trong bằng nhau)
Trong △ABC, ta có: KM // AC
Suy ra: △BMK đồng dạng △BAC (g.g)
Suy ra: (2)
Từ 1 và (2) suy ra:
Vì BM = 1/2 BA nên M là trung điểm AB.
Vì BK = 1/2 BC nên K là trung điểm BC.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |