Bài tập  /  Bài đang cần trả lời

Cho tam giác nhọn ABC, các đường cao BD, CE. Gọi H, K lần lượt là các chân đường cao kẻ từ kẻ từ B và C đến đường thẳng DE. Chứng minh rằng HE = DK.

Cho tam giác nhọn ABC, các đường cao BD, CE. Gọi H, K lần lượt là các chân đường cao kẻ từ kẻ từ B và C đến đường thẳng DE. Chứng minh rằng HE = DK.

1 Xem trả lời
Hỏi chi tiết
19
0
0
Nguyễn Thị Sen
10/09 10:36:59

Vì BD, CE là đường cao của tam giác ABC nên

do đó Δ BDC vuông tại D, Δ CEB vuông tại E.

Gọi M là trung điểm của BC

⇒ DM, EM là đường trung tuyến ứng với cạnh huyền của Δ BDC và Δ CEB.

Áp dụng tính chất của đường trung tuyến ứng với cạnh huyền của hai tam giác trên ta được:

Từ giả thiết ta có tứ giác BHKC là hình thang vuông nên vẽ MI ⊥ DE thì BH//MI//CK ( 1 ) (vì cùng vuông góc với đường thẳng DE)

Mà ta có BM = MC ( 2 ) (do ta vẽ hình trên)

Từ ( 1 ),( 2 ) suy ra BH, MI, CK là ba đường thẳng song song cách đều nên chúng chắn trên đường thẳng HK hai đoạn thẳng liên tiếp bằng nhau là HI = IK ( 3 ).

Áp dụng tính chất của đường cao ứng với cạnh đáy của tam giác cân MDE ta được:

EI = ID ( 4 )

Trừ theo vế đẳng thức ( 3 ) cho ( 4 ), ta được: HE = DK.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×