1. Chứng minh rằng đường thẳng nối trung điểm hai đường chéo và các đoạn thẳng nối trung điểm các cạnh đối của tứ giác gặp nhau tại một điểm.
2. Dùng định lí trên chứng tỏ rằng nếu một tứ giác các đường thẳng nối trung điểm các cạnh đối đi qua giao điểm hai đường chéo thì tứ giác đó là hình bình hành.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
1. Gọi E, F, G, H là trung điểm của AB, BC, CD, DA; I, K là trung điểm của BD, AC.
Tứ giác EFGH có EF//GH(//AC), EF = GH =12AC nên EFGH là hình bình hành. Chứng minh tương tự EIGK là hình bình hành, do đó FH và IK cùng đi qua trung điểm cùng EG.
2. Gọi O là giao điểm của hai đường chéo và M là trung điểm của IK. Nếu EG, FH cắt nhau tại O thì theo câu 1), M trùng với O, do đó I và K trùng O. Tứ giác ABCD có O là trung điểm của hai đường chéo nên là hình bình hành.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |