Cho tam giác ABC, các tia phân giác của các góc B và C cắt nhau ở I. Qua I kẻ đường thẳng song song với BC cắt các cạnh AB và AC ở D và E. Chứng minh rằng hình thang BDEC có một đáy bằng tổng hai cạnh bên.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
DE // BC (theo cách vẽ)
⇒ ∠I1= ∠B1(hai góc so le trong)
Mà ∠B1= ∠B2(gt)
Suy ra: ∠I1= ∠B2
Do đó: ∆BDI cân tại D ⇒ DI = DB (1)
Ta có: ∠I2= ∠C1(so le trong)
∠C1= ∠C2(gt)
Suy ra: ∠I2= ∠C2 do đó: ∆CEI cân tại E
⇒ IE = EC (2)
DE = DI + IE (3)
Từ (1), (2), (3) suy ra: DE = BD + CE
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |