Bài tập  /  Bài đang cần trả lời

Cho tứ giác ABCD. Chứng minh rằng tổng hai góc ngoài tại các đỉnh A và C bằng tổng hai góc trong tại các đỉnh B và D.

Cho tứ giác ABCD. Chứng minh rằng tổng hai góc ngoài tại các đỉnh A và C bằng tổng hai góc trong tại các đỉnh B và D.

1 Xem trả lời
Hỏi chi tiết
12
0
0
CenaZero♡
10/09/2024 11:47:54

* Gọi ∠A1, ∠C1là góc trong của tứ giác tại đỉnh A và C, ∠A2, ∠C2là góc ngoài tại đỉnh A và C.

Ta có: ∠A1+ ∠A2 = 1800 (2 góc kề bù)

⇒ ∠A2= 1800 - ∠A1

∠C1+ ∠C2= 1800 (2 góc kề bù) ⇒ ∠C2= 1800 - ∠C1

Suy ra: ∠A2+ ∠C2= 1800 - ∠A1+ 180o - ∠C1= 3600 – (∠A1 + ∠C1) (1)

* Trong tứ giác ABCD ta có:

∠A1+ ∠B + ∠C1 + ∠D = 3600 (tổng các góc của tứ giác)

⇒ ∠B + ∠D = 3600 - (∠A1 + ∠C1) (2)

Từ (1) và (2) suy ra: ∠A2+ ∠C2 = ∠B + ∠D

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×