Bài tập  /  Bài đang cần trả lời

Một hình bình hành có bốn đỉnh nằm trên bốn cạnh của một hình bình hành khác. Chứng minh rằng các tâm của hai hình bình hành đó trùng nhau.

Một hình bình hành có bốn đỉnh nằm trên bốn cạnh của một hình bình hành khác. Chứng minh rằng các tâm của hai hình bình hành đó trùng nhau.

1 Xem trả lời
Hỏi chi tiết
14
0
0
Phạm Văn Phú
10/09/2024 12:02:41

Gọi EFGH là hình bình hành có bốn đỉnh nằm trên bốn cạnh của hình bình hành ABCD. Gọi O là tâm của hình bình hành EFGH, ta sẽ chứng minh O cũng là tâm của hình bình hành ABCD.

Gọi P, Q theo thứ tự là trung điểm của AD, BC. Ta có OP là đường trung bình của hình thang AEGD nên OP//DG. Tương tự, OQ//GC. Suy ra P, O, Q thẳng hàng.

Chứng minh tương tự, O thuộc đường trung bình RS của hình bình hành ABCD. Do AR//OQ và AR=OQ nên ARQO là hình bình hành. Suy ra AO//RG, AO=RQ. Tương tự, OC//RQ, OC=RQ. Từ đó suy ra O là trung điểm của AC. Do đó, O là tâm của hình bình hành ABCD.

Vậy các tâm của hai hình bình hành EFGH, ABCD trùng nhau.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×