Cho hai đường tròn (O) và (O’) cắt nhau tại A và B, OO’ = 3cm. Qua A kẻ một đường thẳng cắt các đường tròn (O) và (O’) theo thứ tự tại E và F (A nằm giữa E và F). Tính xem đoạn thẳng EF có độ dài lớn nhất bằng bao nhiêu?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Kẻ OI ⊥ AE, O’K ⊥ AF
Trong đường tròn (O), ta có:
IA = IE = (1/2).AE (đường kính vuông góc với dây cung)
Trong đường tròn (O’), ta có:
KA = KF = (1/2).AF (đường kính vuông góc với dây cung)
Ta có: EF = AE = AF
Suy ra: EF = 2IA = 2AK = 2(IA + AK) = 2IK (1)
Kẻ O’H ⊥ OI
Khi đó tứ giác IHO’K là hình chữ nhật (có ba góc vuông)
Suy ra: O’H = IK
Trong tam giác OHO’ ta có: O’H ≤ OO’ = 3 (cm)
Suy ra: IK ≤ OO’ (2)
Từ (1) và (2) suy ra: EF ≤ 2OO’ = 6 (cm)
Ta có EF = 6cm khi H và O trùng nhau hay EF // OO’
Vậy EF có độ dài lớn nhất bằng 6cm khi và chỉ khi EF // OO’
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |