Cho hình hộp ABCD.A’B’C’D’ . Gọi E và F lần lượt là trung điểm của B’C’ và C’D’ . Mặt phẳng (AEF) chia hình hộp đó thành hai hình đa diện (H) và (H’), trong đó (H) là hình đa diện chứa đỉnh A’. Tính tỉ số giữa thể tích hình đa diện (H) và thể tích hình đa diện (H’).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Giả sử đường thẳng EF cắt đường thẳng A’B’ tại I và cắt đường thẳng A’D’ tại J. AI cắt BB’ tại L, AJ cắt DD’ tại M. Gọi V0 là thể tích khối tứ diện AA’IJ. V là thể tích khối hộp ABCD.A’B’C’D’
Vì EB’ = EC’ và B’I // C’F
nên IB′ = FC′ =
Do đó
Để ý rằng BE’ // A’J , B’L // AA’
Ta có
Từ đó suy ra:
Do đó
Tương tự
Gọi AB = a, BC = b , đường cao hạ từ A xuống (A’B’C’D’) là h thì
V = VABCD.A'B'C'D' = hab.sin∠BAD
Vậy
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |