LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Chứng minh rằng mỗi đỉnh của một hình đa diện là đỉnh chung của ít nhất ba cạnh.

Chứng minh rằng mỗi đỉnh của một hình đa diện là đỉnh chung của ít nhất ba cạnh.

1 trả lời
Hỏi chi tiết
7
0
0
Tôi yêu Việt Nam
10/09 13:51:12

Lấy một đỉnh B tùy ý của hình đa diện (H). Gọi M1 là một mặt của hình đa diện (H) chứa B. Gọi A, B, C là ba đỉnh liên tiếp của M1. Khi đó AB, BC là hai cạnh của (H). Gọi M2 là mặt khác với M1 và có chung cạnh AB với M1. Khi đó M2 còn có ít nhất một đỉnh D sao cho A, B, D là ba đỉnh khác nhau liên tiếp của M2. Nếu D ≡ C thì M1 và M2 có hai cạnh chung AB và BC, điều này vô lí. Vậy D phải khác C. Do đó qua đỉnh B có ít nhất ba cạnh BA, BC và BD.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư