Bài tập  /  Bài đang cần trả lời

Cho tam giác cân ABC, AB = AC. Lấy điểm M tùy ý nằm giữa B và C (H.9.7). Chứng minh rằng với mọi điểm M thì AM < AB.

Cho tam giác cân ABC, AB = AC. Lấy điểm M tùy ý nằm giữa B và C (H.9.7).

Chứng minh rằng với mọi điểm M thì AM < AB.

1 Xem trả lời
Hỏi chi tiết
13
0
0
Nguyễn Thị Nhài
10/09/2024 13:50:34

M là một điểm nằm giữa B và C. Ta cần chứng minh AM < AB. Muốn vậy, ta xét các trường hợp sau:

Trường hợp 1: Nếu \(\widehat {AMB} = 90^\circ \), thì AM là đường vuông góc, còn AB là đường xiên kẻ từ A xuống BC theo định lí về đường vuông góc và đường xiên, ta có AM < AB.

Trường hợp 2: Nếu \[\widehat {AMB}\] là góc tù thì trong tam giác AMB, góc AMB lớn nhất nên AM < AB.

Trường hợp 3: Nếu \[\widehat {AMB}\] là góc nhọn thì góc AMC kề bù với nó nên \(\widehat {AMC}\) là góc tù.

Trong tam giác AMC, góc AMC lớn nhất. Do đó AM < AC = AB.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×