Cho tam giác cân ABC, AB = AC. Lấy điểm M tùy ý nằm giữa B và C (H.9.7).
Chứng minh rằng với mọi điểm M thì AM < AB.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
M là một điểm nằm giữa B và C. Ta cần chứng minh AM < AB. Muốn vậy, ta xét các trường hợp sau:
Trường hợp 1: Nếu \(\widehat {AMB} = 90^\circ \), thì AM là đường vuông góc, còn AB là đường xiên kẻ từ A xuống BC theo định lí về đường vuông góc và đường xiên, ta có AM < AB.
Trường hợp 2: Nếu \[\widehat {AMB}\] là góc tù thì trong tam giác AMB, góc AMB lớn nhất nên AM < AB.
Trường hợp 3: Nếu \[\widehat {AMB}\] là góc nhọn thì góc AMC kề bù với nó nên \(\widehat {AMC}\) là góc tù.
Trong tam giác AMC, góc AMC lớn nhất. Do đó AM < AC = AB.Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |