Bài tập  /  Bài đang cần trả lời

Gọi BE và CF là hai đường phân giác của tam giác ABC cân tại A. Chứng minh BE = CF.

Gọi BE và CF là hai đường phân giác của tam giác ABC cân tại A. Chứng minh BE = CF.

1 Xem trả lời
Hỏi chi tiết
15
0
0
Nguyễn Thị Sen
10/09/2024 13:50:37

Do ∆ABC cân tại A nên \[\widehat {ABC} = \widehat {ACB}\].

Do BE là tia phân giác của \[\widehat {ABC}\] nên \[\widehat {ABC} = 2\widehat {EBC}\].

Do CF là tia phân giác của \[\widehat {ACB}\] nên \[\widehat {ACB} = 2\widehat {FCB}\].

Mà \[\widehat {ABC} = \widehat {ACB}\] nên \[\widehat {EBC} = \widehat {FCB}\].

Xét ∆FBC và ∆ECB có:

\[\widehat {FCB} = \widehat {EBC}\] (chứng minh trên).

BC chung.

\[\widehat {FBC} = \widehat {ECB}\] (do \[\widehat {ABC} = \widehat {ACB}\]).

Suy ra ∆FBC = ∆ECB (g.c.g).

Do đó CF = BE (2 cạnh tương ứng).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×