Cho hai đường thẳng chéo nhau ∆ và ∆′ có AA’ là đoạn vuông góc chung, trong đó A ∈ ∆ và A′ ∈ ∆′. Gọi (α) là mặt phẳng chứa AA’ và vuông góc với ∆′ và cho biết AA’ = a. Một đường thẳng thay đổi luôn luôn song song với mặt phẳng (α) lần lượt cắt ∆ và ∆′ tại M và M’ . Hình chiếu vuông góc của M trên mặt phẳng (α) là M1 . Chứng minh rằng khi x thay đổi mặt cầu tâm O luôn luôn chứa một đường tròn cố định.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi I là trung điểm của đoạn AA’. Ta có IO // Δ nên tâm O di động trên đường thẳng d cố định đi qua I và song song với ∆. Mặt cầu tâm O đi qua hai điểm cố định A, A’ , có tâm di động trên đường trung trực d cố định của đoạn AA’. Vậy mặt cầu tâm O luôn luôn chứa đường tròn cố định tâm I có đường kính AA’ nằm trong mặt phẳng AA’ và vuông góc với d.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |