Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC vuông tại A, M là trung điểm của BC. D, E lần lượt là hình chiếu của M trên AB và AC. a) Tứ giác ADME là hình gì, tại sao? b) Chứng minh DE = \(\frac{1}{2}BC\). c) Gọi P là trung điểm của BM, Q là trung điểm của MC, chứng minh tứ giác DPQE là hình bình hành. Từ đó chứng minh: tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM. d) Tam giác vuông ABC ban đầu cần thêm điều kiện gì để hình bình hành DPQE là hình chữ nhật?

Cho tam giác ABC vuông tại A, M là trung điểm của BC. D, E lần lượt là hình chiếu của M trên AB và AC.

a) Tứ giác ADME là hình gì, tại sao?

b) Chứng minh DE = \(\frac{1}{2}BC\).

c) Gọi P là trung điểm của BM, Q là trung điểm của MC, chứng minh tứ giác DPQE là hình bình hành. Từ đó chứng minh: tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.

d) Tam giác vuông ABC ban đầu cần thêm điều kiện gì để hình bình hành DPQE là hình chữ nhật?

1 trả lời
Hỏi chi tiết
22
0
0
Nguyễn Thu Hiền
10/09 17:43:53

a) Ta có D, E là hình chiếu của M trên AB, AC

Nên DM ⊥ AB và ME ⊥ AC, hay \(\widehat {ADM} = \widehat {AEM} = 90^\circ \)

Xét tứ giác ADME có \(\widehat {DAE} = \widehat {ADM} = \widehat {AEM} = 90^\circ \)

Suy ra ADME là hình chữ nhật.

b) Xét ΔABC vuông tại A có M là trung điểm BC

Suy ra AM = \(\frac{1}{2}BC\)

Vì ADME là hình chữ nhật có AM, DE là hai đường chéo, suy ra AM = DE

Mà AM = \(\frac{1}{2}BC\)

Do đó DE = \(\frac{1}{2}BC\).

c) Ta có AD ⊥ AC và ME ⊥ AC, suy ra AD // ME

Mà M là trung điểm của BC

Suy ra E là trung điểm của AC

Xét tam giác AMC có E, Q lần lượt là trung điểm của AC, MC

Suy ra QE là đường trung bình

Do đó QE // AM, QE =\(\frac{1}{2}AM\)(1)

Ta có DM ⊥ AB và AB ⊥ AC

Suy ra DM // AC

Mà M là trung điểm của BC

Suy ra D là trung điểm của AB

Xét ΔBAM có D, P lần lượt là trung điểm của AB và BM

Suy ra DP là đường trung bình của ΔBAM

Do đó DP // AM và DP = \(\frac{1}{2}AM\) (2)

Từ (1) và (2) suy ra DP // EQ, DP = EQ

Do đó DPQE là hình bình hành.

Gọi O là tâm đối xứng của DPQE (là giao điểm 2 đường chéo)

Ta có P, Q lần lượt là trung điểm của BM, MC và M là trung điểm BC

Suy ra M là trung điểm PQ

Xét hình bình hành DPQE có AM // DP và M là trung điểm PQ

Suy ra AM là đường trung bình của DPQE

Do đó AM đi qua trung điểm DE, gọi điểm đó là F

Từ đó AM là trục đối xứng của DPQE tức là đi qua O

Vậy tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.

d) Để hình bình hành DPQE là hình chữ nhật thì \(\widehat {APQ} = \widehat {PQE} = \widehat {QED} = \widehat {EDP} = 90^\circ \)

Ta xét ΔBAM nếu DP ⊥ BM thì AM ⊥ BM

Xét ΔABC có AM vừa là đường trung tuyến vừa là đường cao

Suy ra ΔABC vuông cân tại A

Vậy để hình bình hành DPQE là hình chữ nhật thì tam giác vuông ΔABC cần thêm điều kiện cân tại A.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư