Cho tam giác ABC vuông cân tại A. Qua A vẽ đường thẳng d bất kỳ (d không cắt đoạn thẳng BC). Kẻ BH vuông góc với d, CK vuông góc với d (H, C thuộc d).
a) Chứng minh rằng BH = AK.
b) Gọi M là trung điểm của BC. Chứng minh: ΔBHM = ΔAKM.
c) Chứng minh ΔMHK vuông cân.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) \(\widehat {BAH} + \widehat {CAK} = 90^\circ \)
\(\widehat {BAH} + \widehat {HBA} = 90^\circ \)
Suy ra: \(\widehat {CAK} = \widehat {HBA}\)
Xét tam giác vuông HBA và KAC có:
\(\widehat {BHA} = \widehat {AKC} = 90^\circ \)
AB = AC (tam giác ABC vuông cân tại A)
\(\widehat {HBA} = \widehat {CAK}\)
⇒ ∆HBA = ∆KAC (g.c.g)
⇒ BH = AK
b) Vì tam giác ABC vuông cân tại A nên AM là đường phân giác, đường cao
⇒ \(\widehat {BAM} = \widehat {MAC}\); \(\widehat {ABC} = \widehat {ACB}\)
\[\widehat {ABC} = \widehat {MAC} = 90^\circ - \widehat {ACB}\]
Vậy \(\widehat {ABC} = \widehat {ACB} = \widehat {ABC} = \widehat {MAC}\)
Mà theo phần a có: \(\widehat {HBA} = \widehat {CAK}\)
⇒ \(\widehat {ABC} + \widehat {HBA} = \widehat {ACB} + \widehat {CAK} = \widehat {MAC} + \widehat {CAK}\)
Hay \(\widehat {HBM} = \widehat {MAK}\)
Xét tam giác BHM và AKM có:
BM = AM = \(\frac{1}{2}BC\)
\(\widehat {HBM} = \widehat {MAK}\)
BH = AK
⇒ ∆BHM = ∆AKM (c.g.c)
c) Theo phần b có: ∆BHM = ∆AKM nên MH = MK (2 cạnh tương ứng) (*)
Xét tam giác MKC và tam giác MHA có:
MH = MK
AH = KC (vì ∆HBA = ∆KAC theo phần a)
MC = MA = \(\frac{1}{2}BC\)
⇒ ∆MKC = ∆MHA (c.c.c)
⇒ \(\widehat {KMC} = \widehat {HMA}\)
Mà \(\widehat {KMC} + \widehat {AMK} = 90^\circ \)(vì AM là đường cao của ABC)
Nên: \(\widehat {HMA} + \widehat {AMK} = 90^\circ \) hay \(\widehat {HMK} = 90^\circ \) (**)
Từ (*) và (**) suy ra: tam giác MHK vuông cân tại M.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |