Bài tập  /  Bài đang cần trả lời

Cho a, b là các số nguyên dương và q = \(\frac{{{a^2} + {b^2}}}\) là số nguyên. Chứng minh rằng q là số chính phương.

Cho a, b là các số nguyên dương và q = \(\frac{{{a^2} + {b^2}}}\) là số nguyên. Chứng minh rằng q là số chính phương.

1 Xem trả lời
Hỏi chi tiết
10
0
0
Nguyễn Thị Sen
10/09/2024 17:45:08

Giả sử q không phải là số chính phương

Xét tập S(q) = \(\left\{ {\left. {\left( {a;b} \right) \subset {{\left( {{\mathbb{N}^*}} \right)}^2}} \right|q = \frac{{{a^2} + {b^2}}}} \right\}\). Theo giả thiết S(q) ≠ ∅ nên theo nguyên lý cực hạn tồn tại cặp số (A; B) thuộc S(q) sao cho A + B nhỏ nhất.

Giả sử A ≥ B.

Xét phương trình q = \(\frac{{{x^2} + {B^2}}} \Leftrightarrow {x^2} - Bqx + {B^2} - q = 0\)

Rõ ràng A là một nghiệm của phương trình. Giả sử nghiệm còn lại là a.

Theo định lý Vi–ét ta có:

\(\left\{ \begin{array}{l}A + a = Bq\\Aa = {B^2} - q\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a = Bq - A\left( 3 \right)\\a = \frac{{{B^2} - q}}{A}\left( 4 \right)\end{array} \right.\)

Đến đây ta có thể đi đến kết luận A ≤ a.

Theo phương trình trên thì A2 ≤ Aa = B2 + 6 ⇔ (A – B)(A + B) ≤ 6.

Từ đó suy ra (A – B)(A + B) ∈ {0;1;2;3;4;5;6} với A ≥ B.

Từ đây kiểm tra được chỉ có cặp A = B = 1 thỏa mãn p là số nguyên dương

Khi đó: p = 8 là số lập phương

Như vậy với mọi số nguyên dương thỏa mãn điều kiện bài toán thì p = 8 (A = B = 1 chỉ là các số nhỏ nhất thỏa mãn tính chất này)

Vậy giả sử ban đầu là sai.

Vậy p là số chính phương.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×