Cho tam giác ABC có \(\widehat B = \widehat C = 40^\circ \). Kẻ phân giác BD.
Chứng minh BD + AD = BC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Kẻ MD // BC (M thuộc AB)
Lấy N thuộc BC sao cho BD = BN
Trong tam giác DBN có \(\widehat {DBN} = \frac{1}{2}\widehat B = 20^\circ \)(BD là phân giác)
Mà BD = BN nên tam giác BDN cân tại B; \[\widehat {BND} = \widehat {BDN}\]
Suy ra: \[\widehat {BND} = \frac{{180^\circ - 20^\circ }}{2} = 80^\circ \]
Mà \(\widehat {DNB}\)là góc ngoài của tam giác DNC
Nên: \(\widehat {DNB} = \widehat C + \widehat {CDN}\)
⇒ \(\widehat {CDN} = \widehat {DNB} - \widehat C = 80^\circ - 40^\circ = 40^\circ \)
Vì MD // BC nên \(\widehat {MDB} = \widehat {DBN} = 20^\circ \)
Thấy tam giác BMD cân tại M vì \(\widehat {MBD} = \widehat {MDB} = \widehat {DBN} = 20^\circ \)
Suy ra: BM = MD
Lại có: MD // BC
Suy ra: BM = DC
Mà AB = AC nên AM = AD
\(\widehat {ABD} = \widehat {DBC}\) = \(\frac{1}{2}\widehat B = 20^\circ \)
\[\widehat {ADB} = 180^\circ - 20^\circ - 100^\circ = 60^\circ \]
\[\widehat {BDC} = 180^\circ - 20^\circ - 40^\circ = 120^\circ \]
Vì BDN là tam giác cân tại B nên \(\widehat {BDN} = \widehat {BND} = \frac{{180^\circ - 20^\circ }}{2} = 80^\circ \)
Suy ra: \(\widehat {NDC} = \widehat {BDC} - \widehat {BDN} = 120^\circ - 80^\circ = 40^\circ \)
Mà \(\widehat {DCN} = 40^\circ \)
Nên tam giác DCN cân tại N.
⇒ DN = NC
Xét tam giác AMD và tam giác DNC có:
\(\widehat {ADM} = \widehat {DCN}\)(2 góc đồng vị)
\(\widehat {AMD} = \widehat {NDC} = 40^\circ \)
⇒ ∆AMD ∽ ∆ NDC (g.g)
⇒ \(\frac = \frac = \frac\)
Suy ra: AD = CN.
Vậy BD + AD = BD + NC = BN + NC = BC.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |