Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến (O) với B, C là các tiếp điểm. Kẻ một đường thẳng d nằm giữa hai tia AB, AO và đi qua A cắt đường tròn (O) tại E, F (E nằm giữa A, F).
1. Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn.
2. Gọi H là giao điểm của AD và BC. Chứng minh OH.OA = OE2.
3. Đường thẳng qua O vuông góc với EF cắt BC tại E. Chứng minh SF là tiếp tuyến của đường tròn (O).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
1) Theo giả thiết ta có: AB và AC là tiếp tuyến của (O) nên: \[\left\{ \begin{array}{l}AB \bot OB\\AC \bot OC\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\widehat {ABO} = 90^\circ \\\widehat {ACO} = 90^\circ \end{array} \right.\]
Xét tứ giác ABOC có: \[\widehat {ABO} + \widehat {ACO} = 90^\circ + 90^\circ = 180^\circ \]
Mà 2 góc này là hai góc đối diện
Nên ABOC là tứ giác nội tiếp
Vậy A, B, O, C cùng nằm trên 1 đường tròn.
2) Gọi H là giao điểm AO và BC
Ta có: AB = AC (tính chất 2 tiếp tuyến cắt nhau)
Nên A thuộc đường trung trực của BC (1)
OB = OC = R nên O thuộc đường trung trực của BC (2)
Từ (1), (2): OA là đường trung trực của BC
⇒ OA ⊥ BC = {H}
Áp dụng hệ thức lượng cho tam giác ABO vuông tại B có đường cao BH, ta có:
OB2 = OH.OA
Lại có OB = OE = R
Nên: OE2 = OH.OA
3) Theo phần b ta có: OE2 = OH.OA ⇒ \(\frac = \frac\)
Xét tam giác OEA và tam giác OHE có:
Chung \(\widehat O\)
\(\frac = \frac\)
⇒ ∆OEA ∽ ∆OHE (c.g.c)
⇒ \(\widehat {OEA} = \widehat {OHE}\)(2 góc tương ứng)
Lại có: \(\left\{ \begin{array}{l}\widehat {FEO} = 180^\circ - \widehat {OEA}\\\widehat {EHA} = 180^\circ - \widehat {OHE}\end{array} \right. \Rightarrow \widehat {FEO} = \widehat {EHA}\)
Mặt khác:
\(\left\{ \begin{array}{l}\widehat {SOE} = 90^\circ - \widehat {FEO}\\\widehat {SHE} = 90^\circ - \widehat {EHA}\end{array} \right. \Rightarrow \widehat {SOE} = \widehat {SHE}\)
Xét tứ giác SOHE có: \(\widehat {SOE} = \widehat {SHE}\) cùng chắn cung SE
Suy ra: SOHE nội tiếp
⇒ \(\widehat {SEO} = \widehat {SHO} = 90^\circ \)
Xét tam giác SFO và tam giác SEO có:
SO chung
SF = SE
OF = OE = R
⇒ ∆SFP = ∆SEO (c.c.c)
⇒ \(\widehat {SFO} = \widehat {SEO} = 90^\circ \)
⇒ SF ⊥ OF tại F
Vậy SF là tiếp tuyến của (O).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |