Cho các số thực không âm a, b, c thay đổi thỏa mãn a2 + b2 + c2 = 1. Tìm GTLN của biểu thức Q = \(\sqrt {a + b} + \sqrt {b + c} + \sqrt {c + a} \).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Áp dụng bất đẳng thức Cô–si cho 2 số không âm, ta có:
a2 + b2 ≥ 2ab
b2 + c2 ≥ 2bc
a2 + c2 ≥ 2ac
Cộng vế ta được:
2(a2 + b2 + c2) ≥ 2(ab + bc + ca)
⇒ 3(a2 + b2 + c2) ≥ 2(ab + bc + ca) + a2 + b2 + c2
⇒ 3(a2 + b2 + c2) ≥ (a + b + c)2
Mà a2 + b2 + c2 = 1 nên (a + b + c)2 ≤ 3, hay a + b + c ≤ \(\sqrt 3 \)
Áp dụng bất đẳng thức Bunhia, có:
\({\left( {\sqrt {a + b} + \sqrt {b + c} + \sqrt {c + a} } \right)^2} \le \left( {a + b + b + c + c + a} \right).3\)
⇒ Q2 ≤ 2(a + b + c).3
⇒ Q2 ≤ 6\(\sqrt 3 \)
Suy ra: Q ≤ \(\sqrt[4]\)
Vậy GTLN của Q là \(\sqrt[4]\) khi \(\left\{ \begin{array}{l}a = b = c\\{a^2} + {b^2} + {c^2} = 1\end{array} \right. \Leftrightarrow a = b = c = \frac{1}{{\sqrt 3 }}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |