Cho tam giác ABC cân tại A có BD và CE là hai đường trung tuyến. Chứng minh:
a. Tam giác ADE cân tại A.
b. ∆ABD = ∆ACE.
c. BCDE là hình thang cân.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a. BD và CE là 2 đường trung tuyến.
⇒ EA = EB, DA = DC
Có ΔABC cân tại A ⇒ AB=AC
⇒ AE =AD
⇒ ΔAED cân tại A
b. Xét ΔABD và ΔACE có:
A^ chung
AB = AC (GT)
AD = AE (chứng minh trên)
⇒ ΔABD = ΔACE (c.g.c)
c. EA = EB, DA=DC
⇒ ED là đường trung bình của ΔABC
⇒ ED //BC
⇒ tứ giác BCDE là hình thang
Lại có: ΔABD = ΔACE ⇒ BD = CE (Hai cạnh tương ứng)
⇒ BCDE là hình thang cân.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |