Cho tam giác ABC ( AB > BC) có AB + BC = 11cm, B^=60°. Bán kính đường tròn nội tiếp tam giác ABC là r=23 cm. Tính đường cao AH của tam giác ABC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đặt AB = c, AC = b, BC = a
Ta có: cosB^=a2+c2−b22ac=112−2ac−b22ac
⇔ 12=112−2ac−b22ac
⇔ ac = 112 – 2ac – b2
⇔ 3ac = 112 – b2 (1)
Lại có: r=2SABCa+b+c=2.12.a.c.sinB^11+b=32ac11+b
⇔ 23=32ac11+b
⇔ 4311+b=ac2
Từ (1) và (2): 4(11 + b) = (11 + b)(11 – b)
⇔ (11 + b)(4 – 11 + b) = 0
⇔ b = 7 (vì b > 0)
Suy ra: ac = 24
Mà a + c = 11
⇒ a=3c=8a=8c=3
Suy ra: SABC=12a+b+c.r=12.11+7.23=183
Lại có: SABC=12.AH.BC⇒AH=2SABCBC
Nếu a = 8 thì AH=2.1838=332
Nếu a = 3 thì AH=2.1833=43
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |