Cho các số thực a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng a5 + b5 + c5 chia hết cho 5.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a5 – a = a(a4 – 1) = a(a2 – 1)(a2 + 1)
= a(a2 – 1)(a2 – 4 + 5)
= a(a2 – 1)(a2 – 4) + 5a(a2 – 1)
= a(a + 1)(a – 1)(a + 2)(a – 2) + 5a(a2 – 1) chia hết cho 5.
Vì a – 2, a – 1, a, a + 1, a + 2 là 5 số nguyên liên tiếp nên có một số chia hết cho 5
⇒ a(a + 1)(a – 1)(a + 2)(a – 2) chia hết cho 5
Mặt khác : 5a(a2 – 1) chia hết cho 5
Tương tự có b5 – b chia hết cho 5, c5 – c chia hết cho 5.
Mà a + b + c = 0
Do đó a5 + b5 + c5 = (a5 – a) + (b5 – b) + (c5 – c) chia hết cho 5
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |