Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng phân biệt. Trên các đường chéo AC và BF lần lượt lấy các điểm M và N sao cho AM = BN. Các đường thẳng song song với AB vẽ từ M và N lần lượt cắt AD và AF tại M’ và N’. Chứng minh
a) (ADF) // (BCE).
b) M′N′ // DF.
c) (DEF) // (MM′N′N) và MN // (DEF).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) AD // BC; BC ⊂ (BCE) nên AD // (BCE)
AF // BE; BE ⊂ (BCE) nên AF // (BCE)
Mà AD, AF ⊂ (ADF)
Vậy (ADF) // (BCE)
b) Vì ABCD và ABEF là các hình vuông nên AC = BF. Ta có:
MM'∥CD⇒AM'AD=AMAC1NN'∥AB⇒AN'AF=BNBF2
So sánh (1) và (2) ta được:
AM'AD=AN'AF suy ra: M’N’ // DF
c) Từ chứng minh trên suy ra DF // (MM′N′N)
NN’ // AB nên NN’ // EF
Và NN’ ⊂ (MM’NN’) nên EF // (MM’NN’)
Mà DF, EF ⊂ (DEF) nên (DEF) // (MM′N′N)
Vì MN ⊂ (MM′N′N) và (MM′N′N) // (DEF) nên MN // (DEF).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |