Cho tam giác ABC vuông tại A (AB < AC), có trung tuyến AM. Kẻ MN vuông góc với AB, và MP vuông góc với AC (N thuộc AB; P thuộc AC).
a) Tứ giác ANMP là hình gì? vì sao?
b) Chứng minh: NA = NB, PA = PC và tứ giác BMPN là hình bình hành.
c) Gọi E là trung điểm của BM, F là giao điểm của AM và PN. Chứng minh tứ giác ABEF là hình thang cân.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a/ MP ⊥ AC; NA ⊥ AC ⇒ MP // NA
MN ⊥ AB; PA ⊥ AB ⇒ MN // PA
⇒ ANMP là hình bình hành
Ta có: A^=90°
⇒ ANMP là hình chữ nhật
b/ MN // PA (cmt) ⇒ MN // AC
MB = MC (gt)
⇒ NA = NB
C/m tương tự cũng có PA = PC
Ta có: MP//NA (cmt) ⇒ MP//NB
NA = NB; PA = PC
⇒ NP là đường trung bình của tam giác ABC
⇒ NP // BC ⇒ NP // MB
⇒ BMPN là hình bình hành
c/ Xét hình chữ nhật ANMP có
FM = FA
EM = EB (gt)
⇒ EF là đường trung bình của tam giác MAB
⇒ EF // AB
⇒ ABEF là hình thang
Ta có: MB = MC
⇒ AM=MB=MC=12BC
Ta có: FM=FA=AM2
EB=EM=BM2
⇒ FA = EB
⇒ ABEF là hình thang cân.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |