Tìm các giá trị của m để phương trình x2 – 2(m – 1)x + 2m – 3 = 0 có 2 nghiệm phân biệt x1, x2 thỏa mãn x1−x2=5 với m là tham số.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét phương trình: x2 – 2(m – 1)x + 2m – 3 = 0
Ta có: ∆’ = m2 – 4m + 4 = (m – 2)2 > 0 với mọi m khác 2.
Vậy phương trình đã cho luôn có 2 nghiệm phân biệt khi m ≠ 2.
Áp dụng Vi-ét: x1+x2=2m−1x1x2=2m−3
Theo bài ra: x1−x2=5
⇒ x1−x22=25
⇔ x1+x22−4x1x2=25
⇔ 4(m – 1)2 – 4(2m – 3) – 25 = 0
⇔ 4m2 – 16m – 9 = 0
⇔ (2m – 9)(2m + 1) = 0
⇔ m=92m=−12.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |