Bảng sau thống kê lại tổng số giờ nắng trong tháng 6 của các năm từ 2002 đến 2021 tại hai trạm quan trắc đặt ở Nha Trang và Quy Nhơn.
(Nguồn: Tổng cục Thống kê)
a) Nếu so sánh theo khoảng tứ phân vị thì số giờ nắng trong tháng 6 của địa phương nào đồng đều hơn?
b) Nếu so sánh theo độ lệch chuẩn thì số giờ nắng trong tháng 6 của địa phương nào đồng đều hơn?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Cỡ mẫu n = 20.
Xét mẫu số liệu của trạm quan trắc ở Nha Trang:
Gọi x1; x2; …; x20 là mẫu số liệu gốc về tổng số giờ nắng trong tháng 6 của các năm 2022 đến 2021 tại trạm quan trắc đặt ở Nha Trang được xếp theo thứ tự không giảm.
Ta có x1 ∈ [130; 160), x2 ∈ [160; 190), x3 ∈ [190; 220),
x4; …; x11 ∈ [220; 250), x12; …; x18 ∈ [250; 280), x19; x20 ∈ [280; 310).
Tứ phân vị thứ nhất của mẫu số liệu gốc là 12(x5 + x6) ∈ [220; 250).
Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q1=220+204−1+1+18⋅250−220=227,5.
Tứ phân vị thứ ba của mẫu số liệu gốc là 12(x15 + x16) ∈ [250; 280).
Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: Q3=250+3⋅204−1+1+1+87⋅280−250=18707.
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
∆Q = Q3 – Q1 = 18707 – 227,5 ≈ 39,64.
Xét mẫu số liệu của trạm quan trắc ở Quy Nhơn:
Gọi y1; y2; …; y20 là mẫu số liệu gốc về tổng số giờ nắng trong tháng 6 của các năm 2022 đến 2021 tại trạm quan trắc đặt ở Quy Nhơn được xếp theo thứ tự không giảm.
Ta có y1 ∈ [160; 190), y2; y3 ∈ [190; 220), y4; …; y7 ∈ [220; 250),
y8; …; y17 ∈ [250; 280), y18; y19; y20 ∈ [280; 310).
Tứ phân vị thứ nhất của mẫu số liệu gốc là 12(y5 + y6) ∈ [220; 250).
Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q'1=220+204−1+24⋅250−220=235.
Tứ phân vị thứ ba của mẫu số liệu gốc là 12(y15 + y16) ∈ [250; 280).
Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: Q'3=250+3⋅204−1+2+410⋅280−250=274.
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
∆'Q = Q'3 – Q'1 = 274 – 235 = 39.
Vì ∆Q ≈ 39,64 > ∆'Q = 39 nên nếu so sánh theo khoảng tứ phân vị thì số giờ nắng trong tháng 6 của Quy Nhơn đồng đều hơn.
b) Ta có bảng sau:
Số giờ nắng | [130; 160) | [160; 190) | [190; 220) | [220; 250) | [250; 280) | [280; 310) |
Giá trị đại diện | 145 | 175 | 205 | 235 | 265 | 295 |
Số năm ở Nha Trang | 1 | 1 | 1 | 8 | 7 | 2 |
Số năm ở Quy Nhơn | 0 | 1 | 2 | 4 | 10 | 3 |
Xét mẫu số liệu của trạm quan trắc ở Nha Trang:
Số trung bình của mẫu số liệu ghép nhóm là: x¯N=1⋅145+1 ⋅175+1⋅205+8⋅235+7⋅265+2⋅29520=242,5.
Phương sai của mẫu số liệu ghép nhóm là:
SN2=120(1 ∙ 1452 + 1 ∙ 1752 + 1 ∙ 2052 + 8 ∙ 2352 + 7 ∙ 2652 + 2 ∙ 2952) – (242,5)2
= 1248,75.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: SN=SN2=1248,75≈35,34.
Xét mẫu số liệu của trạm quan trắc ở Quy Nhơn:
Số trung bình của mẫu số liệu ghép nhóm là: x¯Q=1 ⋅175+2⋅205+4⋅235+10⋅265+3⋅29520=253.
Phương sai của mẫu số liệu ghép nhóm là:
SQ2=120(1 ∙ 1752 + 2 ∙ 2052 + 4 ∙ 2352 + 10 ∙ 2652 + 3 ∙ 2952) – 2532 = 936.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: SQ=SQ2=936≈30,59.
Vì SN ≈ 35,54 > SN ≈ 30,59 nên nếu so sánh theo độ lệch chuẩn thì số giờ nắng trong tháng 6 của Quy Nhơn đồng đều hơn.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |