Cho tam giác nhọn ABC có ba đường cao AM, BN, CP cắt nhau tại H. Qua B kẻ tia Bx vuông góc với AB. Qua C kẻ tia Cy vuông góc với AC. Gọi D là giao điểm của Bx và Cy (Hình 15).
Tam giác ABC có điều kiện gì thì ba điểm A, D, H thẳng hàng?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Để ba điểm A, D, H thẳng hàng thì M phải thuộc DH.
Mà M thuộc BC, suy ra M là giao điểm của BC và DH.
Do BDCH là hình bình hành nên hai đường chéo BC và DH cắt nhau tại trung điểm mỗi đường. Suy ra M là trung điểm BC. Suy ra MB = MC
Xét ∆ABM và ∆ACM có:
MB = MC, \(\widehat {AMB} = \widehat {AMC} = 90^\circ \), cạnh AM chung
Do đó ∆ABM = ∆ACM (c.g.c). Suy ra AB = AC (hai cạnh tương ứng)
Dễ thấy, nếu tam giác ABC có AB = AC thì ba điểm A, D, H thẳng hàng.
Vậy tam giác ABC cân tại A thì ba điểm A, D, H thẳng hàng.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |