LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có các đường trung tuyến BD, CE cắt nhau tại G. Gọi F, H lần lượt là trung điểm của BG, CG. Tìm điều kiện của tam giác ABC để tứ giác EFHD là hình vuông.

Cho tam giác ABC có các đường trung tuyến BD, CE cắt nhau tại G. Gọi F, H lần lượt là trung điểm của BG, CG.

Tìm điều kiện của tam giác ABC để tứ giác EFHD là hình vuông.

1 trả lời
Hỏi chi tiết
47
0
0

Để hình bình hành EFHD là hình vuông thì EH = DF và EH ⊥ DF.

Suy ra BG = CG, EG = DG và BD ⊥ CE.

Xét ∆BEG và ∆CDG có:

BG = CG, \(\widehat {EGB} = \widehat {DGC}\)(đối đỉnh), EG = DG

Do đó ∆BEG = ∆CDG (c.g.c). Suy ra BE = CD (hai cạnh tương ứng) (1)

Mà BD, CE là các đường trung tuyến của ∆ABC nên E là trung điểm của AB, D là trung điểm của AC

Suy ra AB = 2BE, AC = 2CD (2)

Từ (1) và (2) suy ra AB = AC

Dễ thấy, nếu AB = AC và BD ⊥ CE thì tứ giác EFHD là hình vuông.

Vậy tam giác ABC cân tại A có hai đường trung tuyến BD, CE vuông góc với nhau thì tứ giác EFHD là hình vuông.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 8 mới nhất
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư