Cho hình bình hành ABCD có BC = 2AB. Gọi M, N lần lượt là trung điểm của BC, AD.
Gọi P là giao điểm của AM và BN, Q là giao điểm của CN và DM. Chứng minh tứ giác PMQN là hình chữ nhật.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Tương tự câu a, ta chứng minh được MANC là hình bình hành.
Do MBND, MANC đều là hình bình hành nên PN // MQ, PM // NQ (do P là giao điểm của AM và BN, Q là giao điểm của CN và DM).
Suy ra tứ giác PMQN là hình bình hành.
Xét ∆ABN và ∆MNB có:
AN = BM, \[\widehat {ANB} = \widehat {MBN}\](hai góc so le trong do BM // AN), cạnh BN chung
Do đó ∆ABN = ∆MNB (c.g.c). Suy ra AB = MN (hai cạnh tương ứng0
Tứ giác ABMN có AB = BM = MN = AN nên ABMN là hình thoi.
Suy ra AM ⊥ BN, do đó \(\widehat {MPN} = 90^\circ \).
Hình bình hành PMQN có \(\widehat {MPN} = 90^\circ \) nên PMQN là hình chữ nhật.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |