Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Gọi (Q) là đường thẳng Ơ-le, H là trực tâm, K là trung điểm AH, M là giao AH và BC.
Suy ra M, K, D ∈ (Q) Gọi P là đầu thứ hai đường kính qua A. Suy ra CP // BH (cùng ⊥ AC), BP // CH (cùng ⊥ AB)
Nên BPCH là hình bình hành Do đó HP cắt BC tại trung điểm BC, tức HP đi qua D ⇒ OD là đường trung bình của ∆PAH ⇒ OD = \[\frac{2}\] = AK ⇒ AODK là hình bình hành ⇒ DK // AO ⇒ DD' trùng với DK Do đó DK là đường kính của (Q), tức DD' đi qua tâm đường thẳng Euler
Vậy nên EE', FF' cũng đi qua tâm đường thẳng Euler.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |