Cho ∆ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng của điểm M qua điểm I.
a) Tứ giác AMCK là hình gì?
b) Tứ giác AKMB là hình gì?
c) Có trường hợp nào của ∆ABC để tứ giác AKMB là hình thoi không? Vì sao?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Áp dụng tính chất của ∆ cân cho DABC ta có: AM ⊥ MC và BM = MC
Vì I là trung điểm của AC và K đối xứng với M qua I nên tứ giác AMCK là hình bình hành.
Lại có MK = AC (= 2MI).
Do đó, tứ giác AMCK là hình chữ nhật.
b) Vì tứ giác AMCK là hình chữ nhật (theo câu a).
Do đó AK // MC và AK = MC = MB.
Vậy tứ giác AKMB là hình bình hành.
c) Nếu tứ giác AKMB là hình thoi thì BA = AK = KM = MB.
Vì DMBA cân tại B nên \[\widehat {BAM} = \widehat {AMB}\] = 90° (vô lí).
Vậy không có trường hợp nào của DABC để AKMB là hình thoi.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |