Bài tập  /  Bài đang cần trả lời

Cho góc nhọn xOy. Trên tia Ox lấy điểm A, B sao cho OA = 3 cm, OB = 5cm. Trên tia Oy lấy điểm C, D sao cho OC = OA, OD = OB. Nối AD và BC cắt nhau tại I. a) Chứng minh: ∆OAD = ∆OCB. b) Chứng minh: IA = IC. c) Chứng minh: OI là tia phân giác của xOy^.

Cho góc nhọn xOy. Trên tia Ox lấy điểm A, B sao cho OA = 3 cm, OB = 5cm. Trên tia Oy lấy điểm C, D sao cho OC = OA, OD = OB. Nối AD và BC cắt nhau tại I.

a) Chứng minh: ∆OAD = ∆OCB.

b) Chứng minh: IA = IC.

c) Chứng minh: OI là tia phân giác của xOy^.

1 Xem trả lời
Hỏi chi tiết
19
0
0
Phạm Văn Phú
10/09 23:15:27

a) Chứng minh: ∆OAD = ∆OCB.

Ta có: OA + AB = OB

OC + CD = OD

Mà OA = OC = 3cm, OD = OB = 5cm.

Nên AB = CD.                                                                       

Xét ∆OAD và ∆OCB có:

OD = OB (gt)

AOD^ chung

 OA = OC (gt).

Do đó ∆OAD = ∆OCB (c.g.c).

b) Chứng minh: IA = IC.

∆OAD = ∆OCB (câu a)

Suy ra: OCB^=OAD^,OBC^=ODA^ (các cặp góc tương ứng).

Ta có: OCB^+BCD^=180o

OAD^+BAD^=180o

Mà OCB^=OAD^

Do đó: BCD^=BAD^.

Xét ∆ICD và ∆IAB có:

OBC^=ODA^ (cmt)

CD = AB (cmt)

BCD^=BAD^ (cmt)

Do đó ∆ICD = ∆IAB (g.c.g).

Suy ra IA = IC (hai cạnh tương ứng).

c) Chứng minh: OI là tia phân giác của xOy^.

Xét ∆OIC và ∆OAI có:

OC = OA (gt)

IC = IA (cmt)

Cạnh OI chung

Do đó ∆OIC = ∆OAI (c.c.c).

Suy ra: IOD^=IOB^ (hai góc tương ứng).

Vậy OI là tia phân giác của xOy^.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×