Cho hình bình hành ABCD và đường thẳng xy không cắt các cạnh của hình bình hành. Qua các đỉnh A, B, C, D vẽ các đường thẳng vuông góc với xy, cắt xy lần lượt tại A', B', C', D'. Chứng minh rằng: AA' + CC' = BB' + DD'
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi O là giao điểm của AC và BD. Vẽ OO'⊥xy.
Ta có: AA' // BB' // CC' // DD' // OO'
Xét hình thang AA'C'C có OA = OC và OO' = AA' nên O'A' = O'C'
Do đó OO' là đường trung bình của hình thang AA'C'C⇒OO'=AA'+CC'2 hay AA' + CC' = 2OO'
Xét hình thang DD'B'B, cũng chứng minh tương tự, ta có: BB' + DD' = 2OO'
Từ đó suy ra: AA' + CC' = BB' + DD'Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |