Cho tam giác ABC, D là một điểm trên cạnh BC. Gọi E và F theo thứ tự là điểm đối xứng của điểm D qua AB và AC.
a) Chứng minh AE = AF;
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) E đối xứng với D qua AB => AB là trung trực của ED => AE = AD.
F đối xứng với D qua AC => AC là trung trực của DE => AF = AD.
=> AE = AF.
Xét ΔAED cân tại A, có AB là trung trực => AB đồng thời là phân giác của EAD^
=> A1^=A2^
Xét ΔADF cân tại A, có AC là trung trực => AC đồng thời là phân giác của FAD^
=> A3^=A4^
=> EAF^=A1^+A2^+A3^+A4^=2A2^+A3^=2BAC^
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |