Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.
a) Chứng minh tứ giác AECF là hình bình hành.
b) Gọi I là điểm đối xứng của A qua BD. Chúng minh EO là đường trung bình của tam giác AIC.
c) Chứng minh tứ giác CIDB là hình thang cân.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
a) Hình bình hành ABCD có O là giao điểm của AC và BD
⇒ O là trung điểm của AC và BD.
⇒ OA = AC và OB = OD
Xét ΔOEA và ΔOFC có:
OA = OC
AOE^=COF^ (đối đỉnh)
AEO^=CFO^=90°
⇒ ΔOEA = ΔOFC (cạnh huyền – góc nhọn)
⇒ OE = OF
Xét tứ giác AECF có
OE = OF (cmt)
OA = OC (cmt)
⇒ AECF là hình bình hành (hai đường chéo cắt nhau tại trung điểm của mỗi đường)
b) I là điểm đối xứng của A qua BD
⇒ E là trung điểm của AI ⇒ AE = EI
Tam giác AIC có:
O là trung điểm của AC (cmt)
E là trung điểm của AI (cmt)
⇒ OE là đường trung bình tam giác AIC (đpcm)
⇒ OE // IC
c) Xét ΔAID có DE là đường trung trực của AI
⇒ ΔAID cân tại D
⇒ DE cũng là đường phân giác của góc ADI
⇒ADE^=IDE^
mà ADE^=CBF^(vì AD//BC)
⇒IDE^=CBF^
Tứ giác CIDB có:
BD // IC (vì OE // IC)
⇒ Tứ giác CIBD là hình than
Mà có IDE^=CBF^ (cmt)
⇒ CIBD là hình thang cân. (đpcm)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |