Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
Hai con xúc xắc cân đối nên các kết quả xảy ra có thể đồng khả năng.
Gieo một con xúc xắc, các kết quả có thể xảy ra là 1, 2, 3, 4, 5, 6 chấm.
Vì gieo lần lượt hai con xúc xắc cân đối, nên theo quy tắc nhân, số phần tử của không gian mẫu là: n(Ω) = 6 . 6 = 36.
Gọi biến cố A: “Ít nhất một con xúc xắc xuất hiện mặt 6 chấm”.
Để ít nhất một con xúc xắc xuất hiện mặt 6 chấm thì có các khả năng là:
+ Trường hợp 1: một con 6 chấm, một con không phải 6 chấm, số khả năng: 1 . 5 . 2 = 10.
(Do gieo lần lượt nên các kết quả: 61; 62; 63; 64; 65; 16; 26; 36; 46; 56).
+ Trường hợp 2: cả hai con 6 chấm, số khả năng: 1.
Vì các trường hợp là rời nhau, nên theo quy tắc cộng, ta có: n(A) = 10 + 1 = 11.
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |