Gieo một đồng xu cân đối liên tiếp bốn lần.
a) Vẽ sơ đồ hình cây mô tả không gian mẫu.
b) Tính xác suất để trong bốn lần gieo đó có hai lần xuất hiện mặt sấp và hai lần xuất hiện mặt ngửa.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
a) Đồng xu cân đối nên các kết quả có thể là đồng khả năng.
Kí hiệu S và N tương ứng là đồng xu ra mặt sấp và đồng xu ra mặt ngửa.
Theo bài ra ta có sơ đồ hình cây mô tả không gian mẫu như sau:
Do đó, n(Ω) = 16.
b) Gọi biến cố A: “Trong bốn lần gieo đó có hai lần xuất hiện mặt sấp và hai lần xuất hiện mặt ngửa”.
Theo sơ đồ hình cây ở câu a, ta có:
A = {SSNN; SNSN; SNNS; NSSN; NSNS; NNSS}.
Do đó, n(A) = 6.
Vậy \(P\left( G \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{6} = \frac{3}{8}.\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |