Có bao nhiêu cặp số nguyên dương \(\left( {x;\,\,y} \right)\) thỏa mãn
\({\log _3}\left( {{x^2} + y + 3x} \right) + {\log _2}\left( {{x^2} + y} \right) \le {\log _3}x + {\log _2}\left( {{x^2} + y + 18x} \right)?\)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
\({\log _3}\left( {{x^2} + y + 3x} \right) + {\log _2}\left( {{x^2} + y} \right) \le {\log _3}x + {\log _2}\left( {{x^2} + y + 18x} \right)\)
\( \Leftrightarrow {\log _3}\left( {\frac{{{x^2} + y + 3x}}{x}} \right) - {\log _2}\left( {\frac{{{x^2} + y + 18x}}{{{x^2} + y}}} \right) \le 0\)\( \Leftrightarrow {\log _3}\left( {3 + \frac{{{x^2} + y}}{x}} \right) - {\log _2}\left( {1 + \frac{{{x^2} + y}}} \right) \le 0\,\,\,(*)\)
Đặt \(t = \frac{{{x^2} + y}}{x}\). Khi đó \((*) \Leftrightarrow {\log _3}(3 + t) - {\log _2}\left( {1 + \frac{t}} \right) \le 0(1)\)
Xét hàm \(f(t) = {\log _3}(3 + t) - {\log _2}\left( {1 + \frac{t}} \right),\)\(\,\,f'(t) = \frac{1}{{(3 + t)\ln 3}} + \frac{{\left( {{t^2} + 18t} \right)\ln 2}} > 0,\,\,\forall t > 0\)
Suy ra hàm số đồng biến trên \(\left( {0\,;\,\, + \infty } \right)\).
Lại có \(f(6) = 0 \Rightarrow (1) \Leftrightarrow f(t) \le f(6) \Leftrightarrow t \le 6\) hay \(\frac{{{x^2} + y}}{x} \le 6\)
\[ \Leftrightarrow {x^2} + y - 6x \le 0 \Leftrightarrow 9 - y \ge {\left( {x - 3} \right)^2}.\]
Cho \(y\) ứng với các số nguyên dương từ 0 đến 9 ta được 35 cặp giá trị thoả mãn.
Vậy có 35 cặp số nguyên dương \(\left( {x\,;\,\,y} \right)\) thỏa mãn yêu cầu bài toán.
Đáp án: \[\frac{3}{5}\].
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |