Bài tập  /  Bài đang cần trả lời

Cho hình nón \({N_1}\) đỉnh \(S\) đáy là đường tròn \(C\left( {O;\,\,R} \right)\), đường cao \(SO = 40\). Người ta cắt nón bằng mặt phẳng vuông góc với trục để được nón nhỏ \({N_2}\) có đỉnh \(S\) và đáy là đường tròn \(C'\left( {O';\,\,R'} \right).\) Biết tỉ số thể tích \(\frac{}{} = \frac{1}{8}.\) Độ dài đường cao nón \({N_2}\) là

Cho hình nón \({N_1}\) đỉnh \(S\) đáy là đường tròn \(C\left( {O;\,\,R} \right)\), đường cao \(SO = 40\). Người ta cắt nón bằng mặt phẳng vuông góc với trục để được nón nhỏ \({N_2}\) có đỉnh \(S\) và đáy là đường tròn \(C'\left( {O';\,\,R'} \right).\) Biết tỉ số thể tích \(\frac{}{} = \frac{1}{8}.\) Độ dài đường cao nón \({N_2}\) là

1 Xem trả lời
Hỏi chi tiết
10
0
0
Tô Hương Liên
11/09/2024 10:30:01

Ta có: \({V_} = \frac{1}{3}\pi {R^2} \cdot SO,\,\,{V_} = \frac{1}{3}\pi {R^2} \cdot SO'\)

Mặt khác, \(\Delta SO'A\) và \(\Delta SOB\) đồng dạng nên \(\frac{{R'}}{R} = \frac{{SO'}}\).

Suy ra: \(\frac{}{} = \frac{{{{R'}^2} \cdot SO'}}{{{R^2} \cdot SO}} = {\left( {\frac{{SO'}}} \right)^3} = \frac{1}{8}\).

Do đó \(\frac{{SO'}} = \frac{1}{2} \Rightarrow SO' = \frac{1}{2} \cdot 40 = 20\;\,({\rm{cm)}}.\)

Đáp án: 20.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×