Cho tam giác ABC cân tại A, hai đường cao BE và CF cắt nhau tại H. Đường thẳng AH cắt EF tại D , cắt BC tại G . Gọi M và N lần lượt là hình chiếu của G trên AB và AC . Chứng minh rằng tứ giác DNGM là hình thoi.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
ΔABE =ΔACF (cạnh huyền, góc nhọn)
=> AE = AF và BE = CF .
Vì H là trực tâm của △ABC nên AH là đường cao, đồng thời là đường trung tuyến, từ đó GB = GC và DE = DF.
Xét △EBC có GN // BE (cùng vuông góc với AC) và GB = GC nên NE = NC.
Chứng minh tương tự ta được MF = MB .
Dùng định lí đường trung bình của tam giác ta chứng minh được DM // GN và DM = GN nên tứ giác DNGM là hình bình hành.
Mặt khác, DM = DN (cùng bằng 12 của hai cạnh bằng nhau) nên DNGM là hình thoi.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |