Bài tập  /  Bài đang cần trả lời

Trong không gian \[Oxyz,\] cho điểm \(A\left( {1\,;\,\,2\,;\,\, - 3} \right)\) và mặt phẳng \((P):2x + 2y - z + 9 = 0.\) Đường thẳng \(d\) đi qua \(A\) và có vectơ chỉ phương \(\vec u = \left( {3\,;\,\,4\,;\,\, - 4} \right)\) cắt \((P)\) tại B. Điểm \(M\) thay đổi trong \((P)\) sao cho \(M\) luôn nhìn đoạn AB dưới góc \(90^\circ .\) Khi độ dài \[MB\] lớn nhất thì tung độ của điểm \(M\) bằng bao nhiêu?

Trong không gian \[Oxyz,\] cho điểm \(A\left( {1\,;\,\,2\,;\,\, - 3} \right)\) và mặt phẳng \((P):2x + 2y - z + 9 = 0.\) Đường thẳng \(d\) đi qua \(A\) và có vectơ chỉ phương \(\vec u = \left( {3\,;\,\,4\,;\,\, - 4} \right)\) cắt \((P)\) tại B. Điểm \(M\) thay đổi trong \((P)\) sao cho \(M\) luôn nhìn đoạn AB dưới góc \(90^\circ .\) Khi độ dài \[MB\] lớn nhất thì tung độ của điểm \(M\) bằng bao nhiêu?

1 Xem trả lời
Hỏi chi tiết
11
0
0
Phạm Minh Trí
11/09 10:30:32

Phương trình đường thẳng \(d:\frac{3} = \frac{4} = \frac{{ - 4}}.\)

Vì \(B \in d\) nên \(B\left( {3b + 1\,;\,\,4b + 2\,;\,\, - 4b - 3} \right)\).

Mà \(B = d \cap (P)\) suy ra \(2\left( {3b + 1} \right) + 2\left( {4b + 2} \right) + 4b + 3 + 9 = 0\)\( \Leftrightarrow b =  - 1 \Rightarrow B\left( { - 2\,;\,\, - 2\,;\,\,1} \right).\)

Gọi \(A'\) là hình chiếu của \(A\) trên \((P)\).

Phương trình đường thẳng \(AA'\) là: \(\frac{2} = \frac{2} = \frac{{ - 1}} \Rightarrow A'\left( {2u + 1\,;\,\,2u + 2\,;\,\, - u - 3} \right).\)

\[A' \in (P) \Rightarrow 2\left( {2u + 1} \right) + 2\left( {2u + 2} \right) + u + 3 + 9 = 0 \Leftrightarrow u =  - 2 \Rightarrow A'\left( { - 3\,;\,\, - 2\,;\,\, - 1} \right){\rm{. }}\]

Theo bài ra, ta có \(M{A^2} + M{B^2} = A{B^2} \Leftrightarrow M{B^2} = A{B^2} - M{A^2} \le A{B^2} - A{A'^2}\).

Khi đó MB lớn nhất \( \Leftrightarrow M \equiv A' = \left( { - 3\,;\,\, - 2\,;\,\, - 1} \right).\) Đáp án: −2.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×