Cho f(x) là hàm số liên tục trên K, k là một hằng số khác 0. Giả sử F(x) là một nguyên hàm của f(x) trên K.
a) Chứng minh kF(x) là một nguyên hàm của hàm số kf(x) trên K.
b) Nêu nhận xét về ∫kfxdxvà k∫fxdx.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Vì F(x) là một nguyên hàm của f(x) trên K nên F'(x) = f(x).
Ta cần chứng minh (kF(x))' = kf(x).
Ta có (kF(x))' = k(F(x))' = kf(x).
Vậy kF(x) là một nguyên hàm của hàm số kf(x) trên K.
b) Vì F(x) là một nguyên hàm của f(x) trên K nên \(\int {f\left( x \right)} dx = F\left( x \right) + C\).
Có \(\int {kf\left( x \right)} dx = kF\left( x \right) + C'\).
Vì C' ta có thể viết lại bằng kC. Tức là C' = kC.
Do đó \(\int {kf\left( x \right)} dx = kF\left( x \right) + kC = k\left( {F\left( x \right) + C} \right) = k\int {f\left( x \right)dx} \).
Vậy \(\int {kf\left( x \right)} dx = k\int {f\left( x \right)dx} \).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |