Xét các số thực không âm a,b thỏa mãn \[2a + b \le lo{g_2}\left( {2a + b} \right) + 1\]. Giá trị nhỏ nhất của \[{a^2} + {b^2}\;\] bằng bao nhiêu?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bước 1: Đặt\[t = 2a + b\;\left( {t \ge 0} \right)\] đưa bất phương trình về dạng\[f\left( t \right) \ge 0\]
Đặt\[t = 2a + b\;\left( {t \ge 0} \right)\] ta có giả thiết đã cho tương đương với\[f\left( t \right) = {\log _2}t - t + 1 \ge 0\]
Ta có\[f'\left( t \right) = \frac{1}{{t\ln 2}} - 1 > 0 \Leftrightarrow t < \frac{1}{{\ln 2}}\] Hàm số đồng biến trên\[\left( {0;\frac{1}{{\ln 2}}} \right)\]
Bước 2: Chứng minh\[t \ge 1\]
Ta chứng minh\[t \ge 1\]
Thật vậy, giả sử t<1 thì \[f\left( t \right) < f\left( 1 \right) = 0\] (mâu thuẫn)
Vậy \[2a + b \ge 1\]
Áp dụng BĐT Cauchy – Schwarz ta có
\[\begin{array}{*{20}{l}}{{{\left( {2a + b} \right)}^2} \le \left( {{2^2} + {1^2}} \right)\left( {{a^2} + {b^2}} \right) = 5\left( {{a^2} + {b^2}} \right)}\\{ \Rightarrow {a^2} + {b^2} \ge \frac{{{{\left( {2a + b} \right)}^2}}}{5} \ge \frac{1}{5}}\end{array}\]
Dấu bằng xảy ra\(\left\{ {\begin{array}{*{20}{c}}{2a + b = 1}\\{\frac{a}{2} = \frac{b}{1}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = \frac{2}{5}}\\{b = \frac{1}{5}}\end{array}} \right.\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |