Xét hình phẳng giới hạn bởi đồ thị hàm số fx=12x, trục hoành và hai đường thẳng x = 0, x = 4. Khi quay hình phẳng này xung quanh trục hoành Ox ta được khối nón có đỉnh là gốc O, trục là Ox và đáy là hình tròn bán kính bằng 2 (H.4.25).
a) Tính thể tích V của khối nón.
b) Chứng minh rằng khi cắt khối nón bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ bằng x (0 ≤ x ≤ 4) thì mặt cắt thu được là một hình tròn có bán kính là f(x), do đó diện tích mặt cắt là S(x) = πf2(x). Tính π∫04f2xdx và so sánh với V.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có chiều cao của khối nón là h = 4, bán kính đáy của khối nón là R = 2.
Do đó thể tích của khối nón là\(V = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\pi {.2^2}.4 = \frac{{16\pi }}{3}\).
b)
Khi cắt khối nón bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ bằng x (0 ≤ x ≤ 4) thì mặt cắt thu được là một hình tròn có bán kính là \(f\left( x \right) = \frac{1}{2}x\).
Khi đó diện tích mặt cắt là \(S\left( x \right) = \pi {f^2}\left( x \right) = \frac{\pi }{4}{x^2}\).
Ta có \(\pi \int\limits_0^4 {{f^2}\left( x \right)} dx\)\( = \pi \int\limits_0^4 {\frac{{{x^2}}}{4}} dx\)\( = \frac{\pi }{4}\int\limits_0^4 {{x^2}} dx\)\( = \left. {\left( {\frac{\pi }{4}.\frac{{{x^3}}}{3}} \right)} \right|_0^4 = \frac{{16\pi }}{3}\).
Vậy \(V = \pi \int\limits_0^4 {{f^2}\left( x \right)} dx\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |